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ABSTRACT
Stellar winds and supernova (SN) explosions of massive stars (‘stellar feedback’) create
bubbles in the interstellar medium (ISM) and insert newly produced heavy elements and
kinetic energy into their surroundings, possibly driving turbulence. Most of this energy is
thermalized and immediately removed from the ISM by radiative cooling. The rest is available
for driving ISM dynamics. In this work we estimate the amount of feedback energy retained
as kinetic energy when the bubble walls have decelerated to the sound speed of the ambient
medium. We show that the feedback of the most massive star outweighs the feedback from
less massive stars. For a giant molecular cloud (GMC) mass of 105 M� (as e.g. found in the
Orion GMCs) and a star formation efficiency of 8 per cent the initial mass function predicts
a most massive star of approximately 60 M�. For this stellar evolution model we test the
dependence of the retained kinetic energy of the cold GMC gas on the inclusion of stellar
winds. In our model winds insert 2.34 times the energy of an SN and create stellar wind bubbles
serving as pressure reservoirs. We find that during the pressure-driven phases of the bubble
evolution radiative losses peak near the contact discontinuity (CD), and thus the retained
energy depends critically on the scales of the mixing processes across the CD. Taking into
account the winds of massive stars increases the amount of kinetic energy deposited in the
cold ISM from 0.1 per cent to a few per cent of the feedback energy.

Key words: hydrodynamics – methods: numerical – stars: massive – supernovae: general –
stars: winds, outflows – ISM: bubbles.

1 IN T RO D U C T I O N

Massive stars have a dramatic impact on the interstellar medium
(ISM): these stars sweep up the ISM with their winds [most promi-
nently in the Wolf–Rayet (WR) phase] and subsequent supernova
(SN) explosions and enrich it with freshly produced heavy elements.
This release of momentum and mass – which will be dubbed ‘stellar
feedback’ in this paper – not only affects molecular clouds in star
formation regions, but since it is a driver of galactic winds (see e.g.
Creasey, Theuns & Bower 2013; Nath & Shchekinov 2013; von
Glasow et al. 2013), also impacts galaxy formation and evolution.
Stellar feedback of massive stars is thought to be responsible for the
low star formation efficiency in galaxies with molecular gas deple-
tion time-scales of around 109 yr (Genzel et al. 2015). Consequently,

�E-mail: katharina.fierlinger@tum.de

a realistic implementation of stellar feedback in numerical simula-
tions is essential to study the dynamics and chemodynamics of the
ISM, from the scales of individual molecular clouds to galaxy for-
mation (e.g. Kobayashi & Nakasato 2011; Dalla Vecchia & Schaye
2012; Scannapieco et al. 2012; Hopkins et al. 2014; Ascasibar et al.
2015).

In this context, it is important to quantify how much energy mas-
sive stars can convert to kinetic energy of the surrounding ISM.
Such estimates are relevant to assess in which processes the feed-
back of massive stars can play a role. For example, such stars are
believed to contribute to driving turbulence in the ISM (see e.g.
Mac Low & Klessen 2004) and fuelling galactic winds (see also
Hopkins, Quataert & Murray 2012). In this work, we check the
ratio of retained versus cumulative feedback energy with numeri-
cal simulations. The aforementioned ratio will be called ‘feedback
energy efficiency’. Studies of starburst wind galaxies typically re-
quire an overall efficiency of several 10 per cent (Veilleux, Cecil &
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Bland-Hawthorn 2005; Strickland & Heckman 2009, but compare
also von Glasow et al. 2013) to power the outflows, while direct
observations of super star clusters in M82 lead Silich et al. (2009)
to assume an upper limit of 10 per cent for this efficiency.

In the past decades the injection of mass and momentum of
(single) SNe into their surroundings has been studied numerically
by many authors (e.g. Thornton et al. 1998; Gatto et al. 2015; Iffrig
& Hennebelle 2015; Walch & Naab 2015). Such studies find that
about 3–10 per cent of the 1051 erg of the SN energy are retained
as kinetic energy of the ambient medium, with a slight dependence
on the ambient density and the physics modelled and a strong de-
pendence on the time at which the retained energy is estimated.
However, many such studies (e.g. Thornton et al. 1998) ignore the
existence of stellar winds and the cavities they create around the star
they originate from. Such winds have however been established to
profoundly transform the circumstellar medium (compare e.g. van
Marle & Keppens 2012; Georgy et al. 2013; Krause et al. 2013).
For a giant molecular cloud (GMC) clump with a radius of 4 pc the
3D study of Rogers & Pittard (2013) finds that winds and SNe lead
to strong leakage of the feedback from this clump. In contrast to
this, our 1D study cannot cover this leakage and thus applies rather
to GMCs like the ones in Orion, which are at least a factor of 10
more massive than this clump.

The impact of the wind of the SN’s progenitor star on the ambient
medium is clearly observed in many cases: for example by the shell
of the progenitor star around SN 1987A reported by Wampler et al.
(1990), the wind shell of a 25 M� star seen in the SN remnant
G296.1–0.5 (Castro et al. 2011) or the stellar-wind envelope seen
in SN 2006aj (Sonbas et al. 2008).

In the processes studied in this work (we follow the energy injec-
tions of winds and SNe) the bubble produced by the massive star is
filled with a hot dilute gas that contains elements created via stellar
nucleosynthesis. It is surrounded by walls of cold, dense swept-up
ambient medium. To estimate the spread of the ejecta, it is important
to take into account, how well these two media mix. In addition,
these mixing processes also affect the cooling physics and conse-
quently impact the feedback energy efficiency. Unfortunately, due to
the large range of scales a hydrodynamical treatment of these mix-
ing processes is beyond reach in most simulations. Therefore many
chemical evolution models assume an immediate mixing of the SN
ejecta in the walls of superbubbles. However, it is unclear if this is
realistic. As pointed out by e.g. Tenorio-Tagle (1996), stellar winds
and SN explosions lead to a two-shock structure with a contact dis-
continuity (CD) separating the well-mixed hot material inside the
bubble from the swept-up, compressed, heated, radiatively cooling
(and thus cold) ambient medium. From two-dimensional numerical
simulations of SN ejecta colliding with the swept-up wind material
in wind-blown bubbles, Tenorio-Tagle (1996) reports R-T instabil-
ities followed by K-H instabilities due to this collision whereas Pan
et al. (2012) report a stable CD for isotropic ejecta. However, Pan
et al. (2012) note that the omnipresent turbulence in the ISM will
lead to instabilities, which in turn enhance the mixing across the
CD by increasing the CD surface. Mixing of shell material into
the hot bubble gas has been suggested to enhance its density, such
that SN shock waves may then produce the observed temperatures
and luminosities when running into such mixing regions (Krause
& Diehl 2014; Krause et al. 2014). Unfortunately, the efficiency of
mixing across the CD still remains an open question, and presently
the mechanism of mixing via droplets produced in the SN receives
most attention (Stasińska et al. 2007; Gounelle et al. 2009; Boss &
Keiser 2012; Gounelle & Meynet 2012; Pan et al. 2012). Examples
of micro- and macroscopic processes capable of degrading the CD

are briefly discussed in the Appendices B1, B2 and B3. In our 1D
pilot study the evaporation of cold clumps deep inside a cavity and
the leakage of feedback from a structured GMC cannot be taken into
account. To some extent one can parametrize these effects in terms
of an assumed mixing length, if they appear close to the CD. The
former creates a larger amount of intermediate density gas, which is
directly parametrized by the mixing length. The latter is effectively
an enhanced dissipation of energy, which follows from the mixing
length by the resulting change in radiative dissipation.

In our work we will thus study the dependence of the feedback
energy efficiency on the assumed mixing efficiency. We will also
show that pre-existing bubbles at the time of the SN explosion
greatly enhance the feedback energy efficiency. Generalizing this
result indicates that also in superbubbles, where the most massive
stars explode first, subsequent SNe become more efficient, since
they can take advantage of the low-density bubbles produced by the
more massive stars.

Our work extends the published stellar feedback energy efficiency
models in two aspects. (1) The energy content of the simulations is
monitored until the shell is decelerated to the sound speed of the
ambient medium (the motivation for this is discussed in Section 2.1).
This is longer than in the work of Tenorio-Tagle et al. (1990, 1991)
and Tenorio-Tagle (1996). (2) Variations of the wind strength with
time are taken into account in the feedback model (Section 2.3).

We do not include the effects of H II regions or radiation pressure
in our models. An estimate of the relative importance of these not
included processes in comparison to winds and SNe for different
types of stars can be found in the review of Dale (2015). Simula-
tions with momentum-driven winds (e.g. Dale 2015; Ngoumou et al.
2015) report a dominance of radiation over the wind momentum for
similar stellar parameters as our study uses. However, in our models
wind bubbles are pressure driven before the SN and wind momen-
tum is also a second-order effect. Freyer, Hensler & Yorke (2003),
who also include the pressure increase caused by stellar winds, find
that the ionization energy dominates during the first 2 Myr of the
evolution of a 60 M� star in a homogeneous n0 = 20 cm−3 and
T0 = 200 K medium, but gets comparable to the kinetic energy and
thermal energy of hot gas later on. In our models, the cavity-size
at the time of the SN explosion influences the retained energy. In-
cluding these processes will thus increase the bubble size, which in
turn increases the retained energy. However, it will not change the
finding that pre-existing bubbles at the time of the SN explosion
are an important feature and that the assumed scalelength of mixing
processes has a strong influence on the retained energy.

This paper will first discuss the implementation of our model
(Section 2), then proceed to models with SNe only (no stellar winds,
Section 3). In Section 4 we will discuss models with stellar winds
and SNe and finally, in Sections 5 and 6, we will summarize our
findings.

2 M E T H O D

In our hydrodynamic simulations a massive star (Section 2.3) is
placed in a homogeneous medium (Section 2.2) where it first pro-
duces a stellar wind bubble and subsequently undergoes an SN
explosion.

The deployed numerical methods are suitable to treat a CD sepa-
rating two distinct phases of the ISM inside the bubble: a hot dilute1

wind phase, which cannot cool due to its low density and a cold

1 Several orders of magnitude below the ambient density, 106 K or hotter.
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denser2 phase, which also does not cool strongly, because it is too
close to the cooling–heating equilibrium temperature to cool effi-
ciently. An analogous behaviour (at higher temperatures) can be
e.g. seen in the cooling curves presented by Sutherland & Dopita
(1993), which show a strong decrease of �(n, T) below 10 000 K.

Due to the presence of the CD, the feedback energy efficiency
depends on the mixing of these two gas phases and is thus influenced
by the spatial resolution and the diffusivity of the numerical scheme.
This unavoidable diffusivity can be related to physical diffusive
processes, which are discussed in Appendix B.

We study the stellar feedback energy efficiency in 1D to be able
to conduct a sensitivity study covering a wide range of parameters
at high resolution.

2.1 Setup of the simulations

The 1D spherically symmetric simulations were carried out with
the Eulerian mesh code PLUTO (Mignone et al. 2007). Our modifi-
cations of the code are a cooling–heating prescription as described
in Ntormousi et al. (2011), which allows for a multiphase ISM and
is based on the cooling–heating function of Wolfire et al. (1995),
a time-dependent feedback of a 60 M� star (Section 2.3), a mini-
mal density to numerically stabilize the very dilute hot zones inside
the bubbles and a threshold density below which radiative cool-
ing is not taken into account. The latter can be used to stabilize
cells near the CD (Appendix B5). Most of our models used an ap-
proximate Riemann solver that is able to represent contact surfaces
particularly well (HLLC Riemann solver, see also Appendix D2), a
linear total variation diminishing (TVD) scheme and second-order
Runge–Kutta time-stepping. For comparison we show the results of
simulations with different solvers in the Appendix D2. If nothing
else is mentioned, the ISM in our models can cool down to 10 K if
the density is above 0.01 particles per cm3.

The spatial resolution of the simulations in our set of models is up
to 250 cells per parsec. (The highest meaningful number of cells per
parsec is discussed in Appendix A.) We started with a computational
box with an edge length of 5 pc and monitored during the simulation
if at least 100 undisturbed cells of ambient medium were left. If the
number of undisturbed cell became too small we added another 5 pc
of undisturbed medium to the computational box.

Our simulations stop when the swept-up shell is decelerated to
the sound speed of the ambient medium. We argue that at this point
turbulent motions will lead to break-up of the shell and very efficient
mixing (and energy deposition) in the ambient medium.

2.2 Cloud material

The standard assumptions for the cloud material in this study are so-
lar metallicity and a density of 2.2 × 10−22 g cm−3. With our chosen
cooling–heating prescription the cooling–heating equilibrium for
this density is reached at a pressure of 1.48 × 10−12 erg cm−3 corre-
sponding to an equilibrium temperature of approximately 40 K. As
shown later (Table 1), the exact temperature does not play an im-
portant role. The number density (n) of ∼100 cm−3 corresponds to
the average density of molecular cloud complexes (Murray 2011).
It is known that molecular clouds exhibit a fractal structure. These
inhomogeneities and the high-density clumps and cores will be
addressed in future work.

2 More than a factor of 4 denser than the ambient medium, 10 K.

Table 1. Comparison of the retained kinetic energy (Ekin) of SNe (1051 erg
inserted at t = 0) in homogeneous media. For all models Ekin and the bubble
radius (r) were evaluated at the time of maximal luminosity (t0) and after
13 t0, which is the end of the simulations in Thornton et al. (1998). The
resolution (�x) and the state of the ambient medium (T, ρ) are varied. Since
the bubble pressure at t0 is much higher than the ambient pressure, the
efficiency of the 1000 K model is comparable to the 40 K model. 40 K is
the equilibrium temperature for a density of 2.2 × 10−22 g cm−3 for the
applied cooling function. For the ambient medium in the 1000 K model, an
artificially stable phase had to be implemented in the cooling model. t0 also
depends on the size of the feedback region (rf) and on the kinetic to thermal
energy ratio. Therefore three SN models are shown: the model of Thornton
et al. (1998) with a mass-loss of 3 M�, our standard SN prescription and
purely thermal energy injection in the 40 K models.

ρ (g cm−3) t (kyr) t/t0 Ekin (1050 erg) r (pc)

Thornton et al. (1998) shell only
T = 1000 K, �x = 0.056 pc, 3 M�
2.2 × 10−25 122 1 2.14 55.8

1590 13 0.77 114.3
2.2 × 10−24 34.4 1 2.17 21.4

447 13 0.75 43.0
2.2 × 10−23 9.73 1 2.33 8.2

126 13 0.84 16.4
2.2 × 10−22 3.06 1 2.35 3.3

39.8 13 0.76 6.6

Thornton et al. (1998) whole SNR
T = 1000 K, �x = 0.056 pc, 3 M�
2.2 × 10−25 122 1 2.73 55.8

1590 13 0.78 114.3
2.2 × 10−24 34.4 1 2.74 21.4

447 13 0.84 43.0
2.2 × 10−23 9.73 1 2.67 8.2

126 13 0.76 16.4
2.2 × 10−22 3.06 1 2.61 3.3

39.8 13 0.80 6.6
T = 1000 K, �x = 0.004 pc, rf = 1.5 pc, 3 M�
2.2 × 10−25 96.5 1 2.84 47.5

1245.5 13 0.82 106.2
2.2 × 10−24 28.0 1 2.77 18.6

364.0 13 0.78 39.4
2.2 × 10−23 8.0 1 2.69 7.3

104.0 13 0.74 15.1
2.2 × 10−22 2.5 1 3.23 3.1

32.5 13 0.66 6.0

T = 1000 K, �x = 0.004 pc, rf = 0.3 pc, 11 M�
2.2 × 10−25 100.5 1 2.68 49.4

1306.5 13 0.80 103.5
2.2 × 10−24 30.0 1 2.68 19.1

390.0 13 0.73 38.3
2.2 × 10−23 9.0 1 2.81 7.5

104.0 0.72 15.0
117.0 13 0.66 15.6

2.2 × 10−22 3.0 1 3.03 3.0
39.0 13 0.59 6.2

T = 40 K, �x = 0.032 pc, 0 M�
2.2 × 10−22 2.5 1 2.89 2.8

32.5 13 0.61 5.9
39.0 0.53 6.2

T = 40 K, �x = 0.016 pc, 0 M�
2.2 × 10−22 3.0 1 2.95 3.0

32.5 0.63 5.9
39.0 13 0.55 6.2
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Table 1 –continued

ρ (g cm−3) t (kyr) t/t0 Ekin (1050 erg) r (pc)

T = 40 K, �x = 0.008 pc, 0 M�
2.2 × 10−22 3.0 1 2.97 3.0

32.5 0.66 5.9
39.0 13 0.58 6.2

T = 40 K, �x = 0.004 pc, 0 M�
2.2 × 10−22 3.0 1 2.96 3.0

32.5 0.68 5.9
39.0 13 0.59 6.2

The median value of the number density of H2 in the Galactic
Ring Survey (Roman-Duval et al. 2010) is 231 cm−3. However,
this survey is likely biased towards high-density regions, since it is
based on 4σ 13CO contours. Similar techniques led to a factor of
10 lower densities in Heyer et al. (2009). Thus, our assumption of
∼100 cm−3 lies well in the plausible region of average densities in
molecular clouds.

2.3 Stellar feedback

The stellar feedback is calculated from the mass-loss rate and the
surface abundances of the rotating models of Ekström et al. (2012).
The surface abundances are used to determine the WR type and for
each type the wind velocity as summarized in Voss et al. (2009)
was applied. Fig. 1 shows the strength of the stellar feedback with
time for different types of massive stars. It illustrates that the most
massive star remaining in a population dominates the feedback
energy (see also e.g. Oey 2005).

A plausible mass of this star can be estimated from the molecular
clouds in the Milky Way: the assumption that about 8 per cent
(Murray 2011) of the molecular cloud mass are converted to stars
leads to a cluster mass of 8 × 103 M� for a molecular cloud of
105 M�. In the Galactic Ring Survey (Roman-Duval et al. 2010)
∼18 per cent and in the list of Heyer et al. (2009) ∼31 per cent of the
Galactic molecular clouds are estimated to be more massive than
105 M�. Weidner, Kroupa & Pflamm-Altenburg (2013) find a most
massive star of ∼60 M� for a cluster mass of 8 × 103 M� with
their polynomial fit to the observed most massive stars as a function
of the cluster mass. Since a good fraction of the GMCs can harbour
most massive stars of 60 M�, we focus on the feedback energy
efficiency of a star of this mass. The stellar winds in this model play
an important role, since they insert 2.34 times the SN energy into the
ambient ISM (Fig. 1). This wind-to-SN ratio is larger than in Voss
et al. (2009), since we consider individual massive stars whereas
Voss et al. (2009) are interested in OB-associations. In groups of
stars, less massive stars lower the ratio of wind energy to SN energy
if a canonical SN energy of 1051 erg is assumed.

In the SN blast of the 60 M� star, 11 M� of material are ejected
(see Section 3.4). In our model these ejecta are initially homo-
geneously distributed over a small sphere of radius rf = 0.32 pc,
which we will refer to as the ‘feedback region’. Since the spheri-
cally symmetric grid in all our simulations starts at 0.032 pc, the
model with the lowest resolution presented here has nine grid zones
inside the feedback region. Test simulations showed that the size of
this feedback region does not influence the results as long as it is
small enough to be fully contained in the wind bubble. All models
including winds respect this condition.

However, at the absence of a wind, the size of the feedback re-
gion can influence the kinetic to thermal energy ratio after 13 times

Figure 1. Stellar feedback of massive stars. The kinetic energy output of
massive stars is shown in the lower panel according to the tabulated mass-
loss rates of the rotating stellar models of Ekström et al. (2012, upper
panel) combined with the estimated terminal wind velocities as summarized
in Voss et al. (2009). The dot–dashed line indicates a constant wind with
the same net energy and mass input as the 60 M� star model with time-
dependent power input. Before the SN (at t = 4.86 Myr) the mass-loss rate
is 8.65 × 10−6 M� yr−1 and the energy injection rate is 4.8 × 1044 erg
yr−1. In total the 60 M� star injects 2.34 × 1051 erg into its surroundings
during the wind phase.

of maximal luminosity (t0). (13t0 are called tf in Thornton et al.
1998, and these simulations end at tf.) The time of maximal lumi-
nosity is defined as the moment when the largest energy losses due
to radiative cooling occur in the simulation. (Despite its name, t0

should not be confused with the time of the maximum in the SN
light curve, which is caused by radioactive decays.) In these cases
we performed convergence studies to decide the optimum size of
the feedback region (Section 3.4).

The time-dependent stellar mass-loss of the wind is inserted ho-
mogeneously in the feedback region. The time-integrated mass-loss
is found by trapezoidal integration in the tabulated data of Ekström
et al. (2012). A part of the wind energy is inserted as kinetic energy
in the feedback region by adding gas mass to cells with non-zero
gas-velocity. The rest of the wind energy is added as thermal en-
ergy. Models that inserted all feedback energy as kinetic energy by
imposing a linear velocity profile in the feedback region (to mimic
the velocity of a Sedov–Taylor sub-grid model) or a constant veloc-
ity (to mimic a free streaming wind region) led to the same results
regarding the feedback energy efficiency.

However, adding kinetic energy produced artefacts in the wind
along the grid in test simulations with two or three dimensions. Since
the models presented in this study are only a subset of a larger set of
models, including models with two or three dimensions, we prefer
to insert the major part of the feedback energy thermally. In models
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Table 2. Grid of models. The ambient medium in all models has a density of 2.2 × 10−22 g cm−3 and a pressure of 1.48 × 10−12 erg cm−3

corresponding to an equilibrium temperature of approximately 40 K. �x is the cell size in the simulation. Despite the lower ambient
temperatures the three uppermost models without winds are comparable to Thornton et al. (1998). The major difference is that we
followed these models for a substantially longer time than Thornton et al. (1998) and thus observe lower efficiencies at the end of our
simulations. For models with an SN explosion (‘Yes’ in column 3), 1051 erg and 11 M� of ejecta were inserted after 4.8596 Myr. For
simulations with stellar winds (‘Yes’ in column 4), the Ekström et al. (2012) model for a rotating 60 M� star and the wind velocities
summarized in Voss et al. (2009) were used. In total this stellar wind inserts 2.34 × 1051 erg. The constant wind model (‘CW’ in column 4)
inserts the same total wind energy at a constant rate. To check the influence of the resolution on the feedback energy efficiency of the
SN explosion, simulations with lower resolution were resampled directly before the SN (indicated as ‘RW’ in column 4), since the
efficiency during the wind phase also depends on the resolution. The slightly higher kinetic energy in the rescaled model at the end of
the wind phase is due to smooth interpolation. ε lists the kinetic energy in 1051 erg when the cell with the highest density is decelerated
to the sound speed of the ambient medium. εk and εt list the retained kinetic and thermal energy at the end of the wind phase (in units
of 1051 erg). ‘Extreme’ thermal conduction mimics a very efficient diffusion process by increasing κ by 14 orders of magnitude. The
parameter a describes a density threshold below which radiative cooling is no longer taken into account. This decreases the energy losses
due to mixing of gas across the CD. The threshold density a is normalized to the density of the ambient medium. The table shows that
higher efficiencies are reached for higher resolutions, thus the higher maximal densities are outweighed by the smaller amount of mixing
across the CD in the higher resolved simulations. Whereas in lower resolved simulations a decrease of the efficiency with increasing
resolution is found, since the cell near the CD is too large to reach high-enough densities or temperatures due to the mixing across the
CD to suffer substantial energy radiative losses at every time-step.

�x �x SN Wind Thermal a ε (vsh = cs) εk (wind) εt (wind)
(pc) (1016 cm) (1051 erg) (2.34 × 1051 erg) conduction (1051 erg) (1051 erg) (1051 erg)

0.032 10.0 Yes No No 0 0.0011 – –
0.016 5.0 Yes No No 0 0.0011 – –
0.008 2.5 Yes No No 0 0.0011 – –
0.032 10.0 No Yes No 0 0.0213 0.0884 0.4981
0.016 5.0 No RW No 0 0.0231 0.0896 0.4981
0.064 10.0 Yes Yes No 0 0.0265 0.1027 0.5422
0.032 10.0 Yes Yes No 0 0.0271 0.0884 0.4981
0.016 5.0 Yes RW No 0 0.0304 0.0896 0.4981
0.016 5.0 Yes Yes No 0 0.0365 0.1136 0.6019
0.008 2.5 Yes Yes No 0 0.0475 0.1340 0.6859
0.004 1.25 Yes Yes No 0 0.0620 0.1598 0.7756
0.032 10.0 Yes Yes No 1 0.0710 0.1841 0.8286
0.016 5.0 Yes Yes No 1 0.0791 0.1947 0.8696
0.008 2.5 Yes Yes No 1 0.0904 0.2076 0.9113
0.032 10.0 Yes Yes Yes 0 0.0244 0.0827 0.4549
0.016 5.0 Yes Yes Yes 0 0.0302 0.1014 0.5570
0.032 10.0 Yes Yes Extreme 0 0.0094 0.0329 0.1915
0.016 5.0 Yes Yes Extreme 0 0.0098 0.0353 0.2211
0.032 10.0 Yes CW No 0 0.0293 0.0932 0.2070

with SNe and without winds the thermal energy fraction in the SN
was either 72 per cent (obtained from the self-similar solution of the
Sedov–Taylor problem; see e.g. Chevalier 1974) if a linear velocity
profile was imposed on this region or 100 per cent thermal energy
otherwise.

3 R E S U LT S : SN E W I T H O U T PRO G E N I TO R
W I N D S

The SN models discussed in this section do not take the stellar
winds of the progenitor star into account. Hence at the time of
the SN explosion the ambient ISM in these models is homogeneous
without pre-existing stellar wind bubbles. These models do not only
provide a consistency check of our setup with published feedback
energy efficiencies (Tenorio-Tagle et al. 1990; Thornton et al. 1998),
but also go beyond them, since our simulations follow the SN shell
until it has been decelerated to the sound speed of the ambient
medium, which is substantially longer than the simulations in the
aforementioned works were monitored. This allows us to study the
full evolution of the energy deposition in the surrounding ISM.

Details on the evolution of the SN bubble can be found in
Appendix C.

3.1 Grid of models

We ran a large number of simulations varying the ambient densities
from 2.2 × 10−25 to 2.2 × 10−22 g cm−3. To compare with previous
work, we keep the initial temperature at 1000 K (see Table 1) in
order to check the influence of the ambient pressure and also of
the spatial resolution on the results. A subset of these models (no
stellar wind, ambient density 2.2 × 10−22 g cm−3) is also shown in
the uppermost part of Table 2. In these models we find very low
feedback efficiencies, but models converge nicely with resolution.

Due to the sharp discontinuity between the hot bubble and the
cold shell, low-order interpolation functions and the exact Riemann
solver (‘two shock’ in PLUTO, see Appendix D2) have to be used
to avoid numerical effects near the CD, which in turn would cause
negative pressures and spurious energy gains.

3.2 Comparison to previous work

A very well studied case of an SN explosion in the literature
(Tenorio-Tagle et al. 1990; Thornton et al. 1998) is the deposi-
tion of ESN = 1051 erg into a homogeneous ambient medium with
a number density of n0 = 1 cm−3.
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Winds or SNe? 715

The study of Thornton et al. (1998) covers also ambient densities
better matching to GMCs than the aforementioned n0 = 1 cm−3

medium, which models the warm phase of the ISM. To compare
models with different ambient densities, they normalized the simu-
lation times with the corresponding ‘times of maximal luminosity’
(t0, defined in Section 2.3).

Thornton et al. (1998) found a feedback energy efficiency of
∼10 per cent after 13 t0 for a wide range of ISM number densities
(n = 0.001–1000 cm−3) and metallicities [log (Z/Z�) = −3.0 to 0].
In their model for an SN explosion without prior stellar wind bubble
in a homogeneous ambient medium with ρ0 = 2.2 × 10−22 g cm−3,
solar metallicity and a temperature of 1000 K, Thornton et al.
(1998) find a feedback energy efficiency of about 8 per cent af-
ter 13 times of maximal luminosity (t0). At this time we find similar
feedback energy efficiencies (Table 1). However, our models show
a slightly stronger density dependence of the feedback energy effi-
ciency: Fig. 2 plots the evolution of the retained kinetic energy as a
function of time in Myr in the top panel and normalized to t0, which
is larger for lower ambient densities, in the lower panel. Table 1 and
Fig. 2 also contain simulations with lower ambient densities than
our standard model to simplify the comparison to Thornton et al.
(1998).

In contrast to Thornton et al. (1998) who stop the simulations
after 13 t0, which is in most models shortly after the transition to
the momentum-conserving phase, we monitor the simulations until
the shell velocity has decreased to the sound speed of the ambient
medium. We assume that the remaining kinetic energy will then be
dissipated by the ambient medium. Fig. 3 and Table 2 show that the
model with an ambient density of 2.2 × 10−22 g cm−3 retains just
0.11 per cent of the SN feedback energy at this time. This efficiency
is much smaller than usually assumed for SN feedback.

3.3 Impact of the ambient pressure

Since the cooling–heating equilibrium in our chosen cooling pre-
scription predicts an equilibrium temperature of 40 K for a density
of 2.2 × 10−22 g cm−3 also models with this temperature of the
ambient medium were added to Table 1. Comparing these models
to the T = 1000 K models shows that the ambient pressure has only
a minor effect. The changes in bubble size and kinetic energy are
less than 1 per cent and would thus be invisible in Table 1. As ex-
pected, a higher ambient pressure leads to a slightly smaller bubble.
However, this is a very small effect. Overall the resolution and the
implementation of the SN are more important, as can be seen from
the models with cell sizes of 0.004 pc in Table 1.

3.4 Impact of the feedback model

The SN implementation of Thornton et al. (1998) assumes a mass-
loss of 3 M� and an energy input ESN of 1051 erg. They insert
6.9 per cent of the SN energy via thermal energy and the rest via
a linear velocity profile in a region of 1.5 pc radius. In the rotating
60 M� star model of Ekström et al. (2012), the stellar mass at the
point of the SN explosion is 18 M� (the rest of the mass was lost
via winds). Assuming a generic remnant mass of 7 M� (like e.g.
Voss et al. 2009) leads to the ejection of 11 M� of material in the
SN blast.

In our study the radius (rf) of the feedback region was reduced
until the choice of the kinetic to thermal energy ratio in the SN blast
changed the retained kinetic energy (εk) at tf = 13 t0 in the model
with the highest ambient density by less than 1 per cent [of εk(tf)]
in the model with the highest ambient density (Table 1). Since the

Figure 2. Retained kinetic energy of an SN in a homogeneous medium
with a temperature of 1000 K in units of SN energies (ESN = 1051 erg).
For this simulation an artificially stable ISM phase at the temperature and
the density of the ambient medium was used. In our simulations a lower
feedback energy efficiency in denser media is observed. This figure shows
the numerical simulations for an SN with a thermal energy fraction of
0.7 ESN, a mass-loss of 11 M� and a feedback region radius of 0.3 pc. Both
panels show the same models for different ambient densities: the time axis
in the lower panel is scaled with the time of maximal luminosity, t0.

bubble size of a Sedov blast is proportional to ρ−1/5, models with
higher ambient medium density are more sensitive to the too large
feedback region problem. In our study this happened at rf = 0.32 pc.
Increasing the feedback region radius to 1.5 pc decreases the kinetic
energy by ∼3 per cent and increases the bubble size by ∼0.5 per cent
at 13 t0.

The thermal energy fraction of the SN energy in our 1000 K
model is 72 per cent (Section 2.3). In the 40 K model shown in
Table 1, all SN energy was inserted via thermal energy, which leads
to a slightly different kinetic to thermal energy ratio in the early
phase than models in which the energy fractions at the SN blast are
chosen according to the Sedov–Taylor solution.
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716 K. M. Fierlinger et al.

Figure 3. Retained kinetic energy [in units of canonical SN energies (1051 erg)] of an SN in a homogeneous medium (T = 40 K and ρ0 = 2.2 × 10−22 g cm−3)
with purely thermal energy input. The energy is quickly lost via radiative cooling, but the shell needs more than 5.6 Myr to decelerate to the sound speed of the
ambient medium. The lower panel compares the retained kinetic energy to the retained kinetic energy in the lowest resolution model. After a Myr the results
for different resolutions are very well converged. In the kinetic energy ratios it can be seen that higher resolution models lose less energy in the pressure-driven
phase due to the smaller cooling region at the sides of the shell (in this phase the dashed lines are above the solid line in the lower panel), but make up in the
momentum conserving phase (dashed line below solid line). The lines end when the shell is decelerated to the sound speed of the ambient medium. The left
insert shows the pressure-driven phase. The convergence of the retained energies at different resolutions can be seen in the right insert and in the lower panel
depicting the energy content of the models divided by the energy content of the model with the lowest resolution at the same time.

3.5 Convergence

Figs 3 and 4 show that the feedback energy efficiency of the
Teq = 40 K models without wind is converged for all resolutions
(0.004–0.032 pc). The retained kinetic energy converges as soon as
the shell has cooled to the equilibrium temperature and the dominant
radiative cooling losses occur in the spatially well resolved newly
swept-up compressed and heated gas at the outside of the shell. At
this time the pressure in the swept-up shell is already larger than
the pressure inside the bubble and the gas is heated to its equilib-
rium value due to the expansion of the gas at the inner side of the
shell. All resolutions show a feedback kinetic energy efficiency of
0.11 per cent when the shell speed reaches the sound speed of the
ambient medium.

4 R ESULTS: SN BLAST IN A C AV ITY

Since the progenitor stars of SNe have strong stellar winds, SN ex-
plosions always happen inside wind-blown bubbles. In this section
we show that this is not a detail, but a very important feature of the
model, since it strongly influences the feedback efficiency.

Figure 4. Zoom in of Fig. 3. In this plot the highest resolution model is
added, which was stopped after 20 t0.
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Winds or SNe? 717

Figure 5. Density structure at different stages of the evolution of the model
shown in Fig. 10. The colours and line styles are the same as in the aforemen-
tioned figure. Long dashes: start of the WR phase. Short dashes: maximal
mass-loss due to the wind. Dotted: end of the wind phase. Long-dash–dotted:
maximal mass-loss due to the SN. Short-dash–dotted: t0. Double dashes:
start of the momentum-driven phase. Double-dot–long-dashed: vsh = cs.

Tenorio-Tagle et al. (1990) found feedback efficiencies of 50–
70 per cent for SNe exploding in bubbles blown by a constant
WR wind with a mass-loss rate of Ṁ = 3 × 10−5 M� yr−1 and a
terminal velocity of 1000 km s−1 into a homogeneous medium with
a number density n = 1 cm−3 and a temperature of 100 K. In their
study the wind phase ends as soon as the wind bubble has reached
a pre-defined diameter.

The bubbles considered in Tenorio-Tagle et al. (1990, 1991) and
Rozyczka et al. (1993) have radii of up to 16 pc at the time of
the SN explosion. These diameters, motivated in these works by
observations, are smaller than what we get by applying the more
realistic wind models of Voss et al. (2009) to the rotating stellar
models of Ekström et al. (2012). For instance, in a medium 100 times
denser (n = 100 cm−3 and T = 100 K), even the least massive star
able to produce an SN creates a 13.6 pc bubble. This probably
means that the feedback acts on higher mean densities than those
considered in the past, so we put our emphasis on n = 100 cm−3

models.
The ambient density plays an important role for the feedback

energy efficiency: models with higher ambient densities have lower
feedback energy efficiencies (Fig. 2, Table 1). Table 2 shows that
our models do not reach the efficiencies reported by Tenorio-Tagle
et al. (1990). This is partly caused by our higher ambient density,
but most importantly we evaluate the feedback energy efficiency at
much later times.

That our simulations can reproduce the results of Tenorio-Tagle
et al. (1990) for the same initial conditions is shown in the Appendix
in Fig. E1. For illustration, we show the density structure of one
model at different evolutionary stages in Fig. 5.

4.1 Grid of models

The ambient medium in our simulations has a density of
ρ0 = 2.2 × 10−22 g cm−3 and is in cooling–heating equilibrium of
the cooling–heating prescription. In cells with densities (ρ) above
aρ0 radiative cooling is taken into account (see also Appendix B5).
Less dense cells do not suffer cooling losses. The grid of models
spans a = 0–1.3 (here only a = 0 and 1 are shown) and the reso-
lutions of 1, 2, 4, 8 or 16 cells per 0.064 pc (∼2 × 1017 cm). For
reference some models do not contain winds or SNe (Table 2) or

Figure 6. Minimal energy bubbles. In this study SNe exploded at t = 0 in
a cavity of given radius. These cavities were created by a constant wind and
the ambient medium has nH = 1 cm−3, T = 1000 K. The feedback efficiency
of an SN in a pre-existing bubble depends on the bubble size, since on the
one hand, the bubble can act as a pressure reservoir due to the very small
cooling losses inside the bubble and on the other hand the dense cavity walls
lead to large radiative losses. It can be seen that bubbles of ∼7 pc radius
have the smallest feedback energy efficiency. Such bubbles are, however,
even too small for the winds of the least massive star ending in an SN. For
larger radii the feedback efficiency rises with increasing radius.

insert the SN in a spatially upsampled wind bubble structure of a
lower resolution run.

4.2 Comparison to previous work

Tenorio-Tagle (1996) report a dichotomy of wind-blown bubbles:
(1) light bubbles, which are overrun by the SN-shock and (2) stable
bubbles that switch to the radiative phase as soon as they are hit by
the blast.

For reference we produced stellar wind bubbles with a con-
stant wind mimicking a 40 M� star consistent with the feedback
in Tenorio-Tagle et al. (1990) with a terminal wind velocity of
v = 1000 km s−1 and a mass-loss rate of Ṁ = 3 × 10−5 M� yr−1,
immersed it in a nH = 1 cm−3, T = 1000 K medium and ignited
the SN as soon as the desired bubble radius was reached. Fig. 6
shows that we observed minimal energy bubbles in between these
two cases: the minimal efficiency occurred at ‘intermediate’ cav-
ity sizes of 7 pc in an nH = 1 cm−3, T = 1000 K medium. This
minimum is created by the counteracting effects of efficient cooling
in the denser shells of larger bubbles and the larger cavities with
inefficient cooling serving as pressure reservoirs. However, this
minimum is of academic interest only, since modelling the wind of
the lowest mass star that still ends in an SN shows that nature does
not produce these minimal energy bubbles: even a 9 M� star in a
nH = 100 cm−3 medium can produce a 10 pc cavity before ending
in an SN explosion.

4.2.1 Wind phase

During the stellar wind phase the models show the structure ex-
pected from stellar wind bubble theory (Pikel’Ner 1968; Avedis-
ova 1972; Castor, McCray & Weaver 1975; Dyson 1977; Weaver
et al. 1977). Earlier models neglect radiative losses in the shell
and describe the evolution of the shell with three parameters: the
mechanical energy input (L = 0.5Ṁv2

∞ with the mass-loss rate Ṁ
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718 K. M. Fierlinger et al.

Figure 7. Motion of the secondary density peak compared to the evolution
of the averaged radiative losses. The losses peak, when the wind material
close to the bubble wall gets compressed. This phase also leads to the sudden
drop of the retained energy of the 6 pc bubble in Fig. 6 at ∼150 kyr.

and terminal wind velocity v∞), the ambient number density (n)
and the age (t). The bubble radius is: R ∝ (

L
n

)2/3
t3/5. However, the

feedback energy efficiency of 100 per cent (i.e. all feedback energy
is retained as thermal or kinetic energy, since no energy losses via
radiative cooling are taken into account) postulated by this model
is unrealistic. Obviously the extent of the zones and zone width
ratios have to differ from these simple adiabatic models, since we
allow for radiative losses: for example the swept-up shell is thinner,
denser and moves more slowly into the ambient medium.

Before the SN explosion and shortly after, the leftmost part of
Fig. 5 (below 2 pc) shows the typical density structure of a free
streaming wind. This part of the plot can be compared to the solution
of Chevalier & Clegg (1985). In our models a region of freely
expanding wind, containing cold gas and mostly kinetic energy, is
separated from the thermalized ejecta, which consist of hot dilute
plasma and contain mostly thermal energy, by a reverse shock. The
presence of this free expansion zone in our simulations shows that
our feedback region radius is not too large.

The pdV work of the thermalized ejecta sweeps up the ambient
medium. This medium forms a thin, efficiently cooling shell, which
is separated from the thermalized ejecta by a CD. Due to the absence
of pressure and velocity gradients across this surface, no mixing
(except for diffusion) between the medium inside and outside the
CD is expected (Tenorio-Tagle 1996).

4.2.2 Post-SN phase

If an SN explodes in the wind bubble of its progenitor, the blast
wave expands freely and also adiabatically in the dilute medium
inside the wind bubble.

Thus, in a pre-existing cavity the Sedov expansion phase is
skipped (see e.g. Tenorio-Tagle et al. 1990), since after this free-
expansion phase, when the blast wave hits the bubble wall, the
evolution continues like during a snowplow-phase. In fact, the SN
ejecta do not reach the dense shell. They rather compress the wind
gas and get reflected (Fig. 7). Thus, according to our models, the
velocity of the SN-ejecta is expected to be higher than the velocity
of the gas in the bubble wall. After the onset of the increased mass-
loss in the WR phase and after the SN, a bouncing wave inside the
cavity is also visible in Fig. 5.

After reflection from the bubble wall the SN blast wave continues
to travel back and forth inside the cavity. This causes oscillations in
the kinetic and thermal energy evolution as well as in the cooling
losses: Whenever the wave hits the wind gas in front of the bubble
wall, compresses it and gets reflected, the radiative losses peak. The
losses at the conversion from kinetic energy to thermal energy are
larger than at the backward-conversion to kinetic energy (see also
Figs 7 and 8 as well as Fig. E1 in the appendix).

As in the models without progenitor winds the cold outer shell is
accelerated by pdV work from the hot (SN) gas inside the bubble. In
later stages, when the pressure in the bubble becomes ineffective,
momentum conservation pushes the shell into the ambient medium.
At the end of the pressure-driven phase a considerable widening of
the shell can be observed in Fig. 5. As a consequence, models with
different spatial resolutions can converge during this phase.

4.3 Feedback energy efficiency: winds or SNe?

Figs 8 and 9 show the kinetic energy evolution of our models sum-
marized in Table 2. The efficiencies listed in Table 2 were computed
at the moment when the cell with the highest density in the simu-
lation moves slower than the sound speed of the ambient medium.
In Fig. 8, which shows the time evolution of the retained kinetic
energy, the lines also end at this time. Fig. 9 depicts the retained
kinetic energy of all these models as a function of the shell velocity.

For these models time-resolved stellar winds of a 60 M� star
were blown into a homogeneous medium. The time of the SN
explosion is set by the stellar model, thus the wind bubble size can
only be influenced indirectly via the density of the ambient medium
and the chosen stellar model (in contrast to the constant wind test
shown in Fig. 6, where the SN explosions occur at a pre-defined
bubble size).

To compare the feedback efficiency of winds and SNe, some
models in our grid lack the SN explosion or the wind phase. They
are shown in the upper-left panel of Figs 8 and 9 and in Table 2.
Since the 60 M� model explodes in an SN after 4.86 Myr, models
without wind phases are started at this time.

The model without SN explosion demonstrates the importance
of stellar winds: the total energy input into the wind-only model is
2.34 × 1051 erg, which is ∼70 per cent of the total energy input of
a more realistic model with wind and SN. The kinetic energy of the
shell in the wind-only model at the time when it is decelerated to
the sound speed of the ambient medium is 79 per cent of the final
energy of the model with an SN blast after the wind phase.

Another indication that continuous energy input is more effi-
cient than blasts is the comparison between the model with a con-
stant wind (CW) and the model with time-dependent wind strengths
(Table 2). For reference the same total wind energy is inserted at a
constant rate in the CW model. This steady wind has more power
at early times (Fig. 1), since the energy input of the WR phase is
distributed over time. Thus, the steady wind produces larger bubbles
than a wind with time varying power input, but the same total energy
input. Since wind-blown bubbles serve as pressure reservoirs after
the SN, higher feedback energy efficiencies are found for larger
bubbles.

Overall it can be seen that wind-bubbles enhance the energy
feedback efficiency. For example the models with a resolution of
0.032 pc without progenitor wind retain 1.1 × 1048 of 1051 erg
(0.11 per cent) whereas models with pre-existing bubbles retain
more than 4.7 × 1049 of 3.34 × 1051 erg (1.5 per cent).

MNRAS 456, 710–730 (2016)

 at Sw
inburne U

niversity of T
echnology on M

ay 9, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Winds or SNe? 719

Figure 8. Time evolution of the retained kinetic energy. The wind phase ends after 4.86 Myr. All lines end when the cell with the highest density is decelerated
to the sound speed of the ambient medium. Simulations with an SN without pre-existing wind bubble (upper-left panel) have a six times lower feedback energy
efficiency than the more realistic models with SNe in pre-existing bubbles (upper-right panel; see also Table 2 – for �x = 0.032 pc the simulation with an SN
without wind leads to 0.11 × 1049 erg of kinetic energy compared to the difference between simulations with wind and with/without SN: 0.58 × 1049 erg).
tf = 13t0 (t0 is the time of maximal loss, at tf the efficiencies are evaluated) as defined by Thornton et al. (1998) is 4.8915 Myr for the model without wind
(kinetic shell energy: 0.61 × 1050 erg) and ranges from 4.9955 to 5.0605 Myr for all other simulations. The maximum of the y-axis was chosen to reduce white
space and make comparisons between the four panels and Fig. 9 easier. The given peak values should not be overinterpreted as the peaks are very transient
phenomena. In pre-existing bubbles almost all thermal energy of the SN is converted to kinetic energy, but is quickly lost, when the blast hits the shell.

4.4 Convergence of the retained kinetic energy

We have checked the convergence of our models for different Rie-
mann solvers as well as different temporal and spatial resolutions.
Details on the two aforementioned studies can be found in the
Appendix D.

Generally speaking we found no dependence on the time-step
size and increasing the diffusivity of the Riemann solver has similar
effects as decreasing the spatial resolution. Our models converge

if cooling losses in the newly swept-up medium dominate. This
is the case in momentum-driven bubbles (i.e. in all our models
for SNe without progenitor-winds and at late phases of the other
models), whereas our models cannot converge when the cooling
losses caused by mixing across the CD dominate in the pressure-
driven bubbles (e.g. during the wind phases and in the early post-SN
phase). This convergence issue can, however, be solved by deciding
on which scales the ISM mixes (see Appendices B1–B3). The spatial
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Figure 9. Retained kinetic energy as a function of the velocity of the cell with the highest density. This is a variant of Fig. 8: the retained kinetic energy for
the same models is displayed as a function of velocity instead of time. The velocities are normalized to the sound speed of the ambient medium (∼1 km s−1).

resolution of the numerical simulation governs the mixing of gas
phases across the CD (the PLUTO code allows for one gas phase per
cell) and thus implies a length-scale on which diffusive processes
occur. Thus, the feedback energy efficiencies of our simulations
with different resolutions are solutions for different efficiencies and
scalelengths of turbulent diffusion.

In short, the phase when the maximal velocity in the shell falls
below the sound speed of the ambient medium occurs later, at
larger radii and at higher kinetic energies for higher a and higher
resolutions.

4.4.1 Spatial resolution

In contrast to the feedback energy efficiencies of SNe in a homoge-
neous medium, the efficiencies of SNe in a pre-existing bubble

depend on the assumed length-scale of mixing in the ISM
(Appendices B1–B3). If the assumed length-scale of the mixing pro-
cesses is below our resolution, the efficiencies in Table 2 are lower
limits.

Table 2 and the upper-right panel of Fig. 8 show that resampling
the wind bubble to twice the resolution at the SN leads to an increase
of the retained kinetic energy. If the model is resampled to twice
the resolution after 6 Myr, as soon as the oscillations due to the
evanescent SN wave, which can be seen e.g. in Fig. 7, are damped
away, also the feedback energy efficiency in the rescaled model is
higher. Restarting at the end of the pressure-driven phase (9 Myr, not
shown in the plot, since the lines would be on top of each other) with
twice the resolution does not change the efficiency. This is consistent
with the SN model without wind, which retained 0.11 per cent of
the inserted energy when the shell speed reached the sound speed
of the ambient medium independently of the resolution. 0.2 Myr
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after the SN all models without pre-existing bubble have entered
the momentum conserving phase (the transition times are listed in
Tables C1 and C2).

Basically the cooling losses occur in two distinct regions of the
models: in the dense, swept-up shell and near the CD. In simulations
with low spatial resolutions3 the swept-up shell is not resolved and
the cooling losses in the dense shell dominate. Thus, increasing
the resolution reduces the energy efficiency, since it causes higher
peak densities in the swept-up shells and the cooling losses rise
with number density squared. At higher spatial resolutions, as soon
as mixing across the CD produces a strongly cooling cell at every
time-step,4 however, the feedback energy efficiency starts to rise
again with increasing resolution. This behaviour is caused by the
volume of the strongly cooling zone:5 this zone is located at the
CD and has a width of a single cell only. The volume decreases, if
the cell sizes are reduced. There are two counteracting effects: (1)
the volume of a shell with a width of one cell at the same radius is
reduced by the factor �x1

�x2
(i.e. 0.5 for doubling the cell number), but

(2) at the same simulation time, simulations with higher resolution
and thus higher efficiency have already produced larger bubbles.
This makes the volume ratio at the same simulation time larger than
�x1
�x2

i.e. >0.5 for doubling the cell number.
If the energy losses at the CD dominate, we would expect to

find half the loss if the volume of the cooling zone is halved. From
Table 2 we find, however, that the kinetic energy of the shell when
the shell has been decelerated to the sound speed seems to rise like
E0 × (1.3)n for a = 0 and like E0 × (1.1)n for a = 1, where n is the
number of cells per unit length and E0 is a proportionality constant.
The lower factor for a = 1 strengthens the assumption that this
treatment of the CD reduces the importance of radiative losses near
the CD in this model.

For the resampled model without SN and a = 0, we find a factor
∼1.1 despite the fact that no energy is added to this model after re-
sampling. This is expected, since the absence of the SN blast reduces
the duration of the pressure-driven phase and in our simulations dif-
ferences due to the spatial resolution arise in pressure-driven phases
only. The higher resolved model can retain more kinetic energy,
since it loses less energy at the CD.

The comparison of these factors and the fact that resampling the
model after the transition to the momentum-driven phase to higher
resolution does not influence the feedback energy efficiency show
that the treatment of the CD and the assumed mixing processes
are most important during the wind phases and the pressure-driven
post-SN phase.

The influence of the spatial interpolation scheme on the retained
energy is described in Appendix D2.

3 These models have lower resolutions than the models in Table 2.
4 A strongly cooling cell arises if enough energy from the hot phase is mixed

with enough density from the cold phase. At low resolution this occurs only
less frequently (only every nth time-step).

5 The cooling losses are proportional to the volume, the time and the density
squared. The density in the mixing cell is independent of the resolution,
since the flux of hot gas into the CD cell is set by the shell velocity. The
mixture in the cell is given by naverage = nhotvshell

�t
�x

+ (
1 − vshell

�t
�x

)
ncold

or naverage = (nhot − ncold) vshell
�t
�x

+ ncold. �t
�x

is set by the peak velocity
and the Courant-Friedrichs-Lewy-Condition (CFL). This shell velocity to
peak velocity ratio differs less than 10 per cent between the resolutions.
Moreover, the density is smaller for smaller CFL, but in our simulations the
energy efficiencies did not depend on the CFL.

4.4.2 Influence of the size of the feedback region

To test the influence of the number of cells in the feedback region
on the energy content of the simulation, models with different reso-
lutions (�x from 0.008 to 0.032 pc) and diameters of the feedback
region (rf from 0.32 to 0.64 pc) were compared.

This set of models shows the general trend that simulations with
higher spatial resolution find higher energy efficiencies. Comparing
the free streaming region to the solution of Chevalier & Clegg
(1985) shows good agreement for all models: the density profile
is ∼ 1

30x2 for all �x and all rf. Also the kinetic energy profiles for
all �x and all rf are similar to those in Chevalier & Clegg (1985).
Since the pressure in the top hat distribution in the feedback region
is proportional to r−2

f , the pressure is larger for larger rf. All models
show a decay like p ∝ x−10/3, as expected.

The kinetic and thermal energy increase starts later for
�x = 0.016 pc and rf = 0.64 pc than for rf = 0.32 pc at the
same resolution, since the initial top hat structure has to evolve
into a wind structure, which takes longer for larger regions. Later
the rate of energy increase is the same; i.e. adjusting the zero-
points of time in the energy versus time diagram shows the same
rise. As a result increasing rf leads to slightly smaller bubbles.
However, if the spatial resolution is decreased to �x = 0.032 pc,
the energy increase also starts later for larger rf, but after 0.1 Myr
the energy uptake rate becomes higher for larger rf, leading to larger
bubbles for larger rf. Doubling the feedback region radius thus led
to an increased energy efficiency for the lowest resolution, since the
larger pre-existing bubble can serve better as pressure reservoir. For
�x = 0.016 pc, however, the region diameter did not change the
efficiency any more.

4.4.3 Influence of mixing processes

If radiative cooling is applied for all densities in the cooling table
(a = 0, Table 2, Fig. 8 upper-right panel), the kinetic energy at the
end of the wind phase is a factor of 1.3 higher in simulations with a
cell size of �x = 0.008 pc than in simulations with �x = 0.016 pc.
In the latter, the kinetic energy during the wind phase is a factor of
1.2 higher than in a simulation with �x = 0.032 pc. At the end of
the simulations, when the bubble shell has decelerated to the sound
speed of the ambient medium, the feedback energy efficiency rises
by a factor 1.3 if the number of cells is doubled.

If there is no density threshold for radiative cooling (a = 0), also
the SN shell can cool. More than 70 per cent of the energy is lost
via radiative cooling when the SN blast hits the bubble wall. All the
kinetic energy in the reflected wave is lost at the origin, since the
reflected wave sweeps up the gas and creates an efficiently cooling
density peak at the origin. Again losses are higher in simulations
with larger cells.

In the lower-left panel in Figs 8 and 9 the CD is artificially en-
forced via the threshold density a for cooling. The dependence on
the resolution in these models is less pronounced than in the more
realistic cases shown in the upper-right panel, but still exists, since
the treatment with a reduces the losses near the CD, but cannot pre-
vent mixing of the two phases. Limiting the mixing processes across
the CD by applying radiative cooling only to cells with densities
above the ambient density, leads to a feedback energy efficiency
of approximately 7 per cent for a cell size of �x = 0.032 pc. If
all cells with densities below the ambient density are considered
to contain not radiatively cooling hot gas (a = 1.0, Table 2, Fig. 8
lower-left panel), halving the cell size increases the kinetic energy
when the bubble shell has decelerated to the sound speed of the
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ambient medium or the kinetic energy at the end of the wind phase
by a factor of 1.1. If the cell size is reduced, the oscillations between
kinetic and thermal energy caused by the SN are less damped. The
radiative energy losses are largest when thermal energy is converted
to kinetic energy (see Fig. 7). When the wave enhances the pressure
near the bubble wall, strong radiative cooling losses arise in cells,
which are dense and hot enough to cool. Since no density peak (as
high as the ambient medium) is found at the origin, no additional
losses occur when the SN wave is reflected at the origin. The losses
are larger if the cells are larger.

The lower-right panel shows the second approach to limit the
losses near the CD: a mixing process smears out the CD and pro-
duces several cells with intermediate temperature gas and intermedi-
ate density gas. This prevents that high-temperature gas mixes with
dense gas at the CD. Taking into account thermal conduction (see
Appendix B1) lowers the efficiencies by 10 per cent (�x = 0.032 pc)
or 18 per cent (�x = 0.016 pc). Also the dependence on the spatial
resolution decreases, if thermal conduction is taken into account.
In this panel we also show a 14 orders of magnitude higher diffu-
sion coefficient to mimic a very efficient mixing process. Efficient
mixing is expected to remove the dependence of the feedback en-
ergy efficiency on resolution, and indeed, the model with extreme
conduction is converged for all resolutions.

Basically our spatial resolution defines a scalelength on which
gases are mixed with 100 per cent efficiency. Since our resolution
has reached or even gone below the proposed length-scale of tur-
bulent mixing (Appendix B3) we conclude that the dependence of
the feedback energy efficiency on the spatial resolution depicts the
dependence of the radiative losses caused by mixing across the CD.

5 D ISCUSSION

As we have shown, blast waves of SN explosions in cavities exca-
vated by WR winds undergo an expansion almost without energy
losses until they hit the cavity walls. As a consequence wind-blown
bubbles delay the time of maximal luminosity (defined in Section
2.3) and increase the amount of retained energy, since such cavi-
ties can act as pressure reservoirs. When the blast hits the cavity
walls, so-called catastrophic cooling in the dense shell of swept-up
ambient medium sets in (Tenorio-Tagle et al. 1990; Smith & Rosen
2003). This evolutionary stage should be observable, and it has
been suggested (Chu & Mac Low 1990; Arthur & Henney 1996;
Oey 1996) that the X-ray emission in excess of an adiabatic model
in X-ray bright superbubbles is likely caused by an SN blast wave
hitting a pre-existing shell and leading to strong radiative cooling
losses.

Since the feedback energy efficiency is greatly influenced by a
limited number of cells suffering strong radiative losses, we will
briefly summarize the nature of these cells. The largest cooling
losses of the models are

(i) at the CD during pressure-driven phases;
(ii) in the dense shell during momentum-conserving phases.

High-resolution simulations have a higher feedback-efficiency
during the wind phase (and other pressure-driven phases) because
of the following reasons.

(i) The volume of the strongly cooling layer gets smaller at
higher resolutions. However, at very low resolutions the feedback-
efficiency starts to rise again, since in this case a cell suffering from
large radiative losses caused by mixing across the CD does not exist

Figure 10. Gas phases in the a = 0, �x = 0.016 pc model: the cells with
the highest density approach the cooling–heating equilibrium (solid line).
The fill colour of the dots carries information on the radiative losses. The
dark colours of the rightmost points on the curves show cooling losses in
the dense, swept-up shell. Bright points on the equilibrium curve depict the
ambient medium. The solid lines connecting dots are meant to guide the eye
and link gas from adjacent cells. The dark dots in the centre show the cooling
losses near the CD. The plot compares the location of the cooling losses
at different stages of the evolution. When the mass-loss rate peaks, cooling
losses of dense gas are found near the feedback zone. Typical pressure-
driven phases (start of the WR phase at 3.46 Myr, end of the wind phase at
4.50 Myr, time of maximal luminosity at 4.87 Myr) show cooling losses near
the CD whereas losses in the dense shell dominate during momentum-driven
phases (in the plot the start of the momentum-driven phase at 9.76 Myr and
the end of the simulation at 23.40 Myr are shown).

at every time-step, because the gas does not get dense or hot enough
to cool efficiently.

(ii) Smaller cells lead to a better separation of the media. De-
creasing the cell size can thus mimic a gas with less efficient mixing
processes (physical processes are discussed in Appendix B).

The deviations from the cooling–heating equilibrium and the
cooling losses are shown in Fig. 10. In this figure the evolution of
the gas phases in the a = 0, �x = 0.016 pc model are visualized.
The solid line shows the cooling–heating equilibrium curve. The
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ambient medium is represented by a very bright dot (no losses) on
the equilibrium curve. The gas properties in the swept-up shell and
inside the bubble are shown by dots linked with lines connecting
adjacent cells. The colour of the dots contains information on the
radiative losses. It can be seen that there are two regions with en-
hanced cooling losses: the CD (centre) and the dense part of the
shell (bottom right). The cooling–heating phase space plot shows
seven distinct snapshots of the model represented by different line
styles. (1) 3.457 Myr at the start of the WR phase the shell is pres-
sure driven and we find cooling losses near the CD and in the shell.
(2) The mass-loss rate of the winds peaks at 4.4975 Myr and leads to
dense cooling gas near the feedback region. (3) Towards the end of
the wind phase at 4.85 Myr radiative cooling is effective in the shell
and near the CD. (4) As soon as the SN explosion has taken place
(4.8596 Myr), again dense material is found near the feedback re-
gion. (5) At the time of maximal luminosity (4.8695 Myr), when the
SN blast wave hits the cavity wall, cooling near the CD is very im-
portant. (6) When the model has transited to the momentum-driven
phase (9.7595 Myr), cooling in the dense swept-up shell dominates.
At this stage models of different spatial resolution converge. (7)
Also at the end of the simulation (23.3975 Myr), when the shell has
decelerated to the sound speed of the ambient medium, cooling is
only effective in the dense shell.

Comparing cooling losses in these snapshots shows that the en-
ergy losses in or near the CD cell are less important after the end
of the pressure-driven phase. At this point the models of different
spatial resolution start to converge.

In short, wind-blown cavities should not be ignored as they can
strongly increase the amount of kinetic energy deposited in the
ambient medium by reducing radiative cooling losses. For the same
reason it is dangerous to argue using the IMF (like e.g. Geen et al.
2015) that one can safely ignore the feedback of the most massive
stars (O stars), as they are relatively rare and rather focus on the
more abundant B stars, which also end in an SN explosion. Just
like not taking stellar winds into account, this approach misses the
important effect, the density structure of the ambient medium plays
in determining how efficiently the SN energy can be converted
to kinetic energy of the ambient medium. Stellar winds are often
assumed to be constant if they are taken into account in the literature
on feedback energy efficiencies (e.g. Tenorio-Tagle et al. 1990,
1991; Tenorio-Tagle 1996). We already mentioned that ignoring
winds is problematic, since the amount of mechanical luminosity
that can be converted to shell motion differs between models, which
insert all energy in a blast (an SN) and models where stellar winds
are energy sources over long periods of time (see also Tenorio-Tagle
et al. 1990, 1991; Oey & Massey 1994; Oey 1996; Tenorio-Tagle
1996, and Table 2). To a smaller extent one can also run into the same
problem, if the time dependence of the wind strength is ignored.

To summarize, during all momentum-driven phases, the models
converge nicely. However, models with pre-existing bubbles also ex-
hibit pressure-driven phases during their evolution. In these phases
the mixing of gas phases across the CD leads to non-convergence.
Our suggested workaround for this problem is to use Fig. 8 or 9.
(1) First one needs to select a length-scale for mixing. (2) Then
one selects the simulation with a resolution close to this limit. (3)
Additionally one decides at which time or velocity one needs the
feedback energy efficiency. (4) Our simulations were continued un-
til the peak of the shell velocity falls below the sound speed in the
n = 100 cm−3, T ∼ 100 K medium (1 km s−1). For example, if one
decides that the typical turbulent velocity dispersion of a GMC is
higher than this and an earlier end of the calculation is needed, Fig. 9
can be used to retrieve the feedback energy efficiency at higher shell

peak velocities. For the feedback energy efficiency at earlier times,
Fig. 8 can be used.

We recommend using the models in the upper-right panels in
Fig. 8 or 9. All other panels contain models where some processes
were modified for comparison. For example the need of increasing
conduction by 14 orders of magnitude to reach convergence shows
that we have to assume a certain mixing efficiency and mixing scale
of gas phases to tackle the problem without convergence.

6 C O N C L U S I O N S

We investigated the efficiency of stellar energy deposition in the
ISM from massive stars and their SNe in different environments.
Our results are as follows.

(i) If a simulation with 100 particles per cm3 uses a feedback
energy efficiency of 10 per cent as a sub-grid model (as found by
Thornton et al. 1998), a time-step of 33 kyr (corresponding to 13 t0,
the time at which this feedback energy efficiency is found) has
to be resolved. A short time later the efficiency drops far below
10 per cent (Figs 3 and 4).

(ii) Without the stellar wind of the progenitor star the feedback
energy efficiency of the SN explosion of a massive star, which is
placed in a dense medium, is much smaller than if the wind is taken
into account. Table 2 shows that the retained energies in these two
cases differ by a factor of 6.

(iii) The cumulative feedback energy of the stellar wind of a 60
M� star is 2.34 ESN. The impact of the stellar wind can be seen
from a comparison between a model with no SN blast at the end
of the wind phase and a model with both progenitor wind and SN
blast. The energy difference when the shell reaches the sound speed
(Table 2) is 2.13 × 1049 erg in a model without SN compared to
2.71 × 1049 erg in a model with SN and wind. This differs from the
ratio of the total energy inputs (2.34 × 1051 and 3.34 × 1051 erg).
Thus, steady feedback is more efficient than a blast.

(iv) Models, in which the same net energy input as in the wind
with time-varying power input is inserted via a constant wind, show
an 8 per cent higher feedback energy efficiency than models with
time-resolved winds (see Table 2). Averaging the WR phase over
the whole stellar lifetime makes the constant wind stronger than
the wind with time-varying strength in early phases and allows it
to create a larger bubble at early times, which serves as a pressure
reservoir for the bubble expansion later on. At the SN the bubble size
and the retained kinetic energy of the constant wind model are larger
than in the model with varying wind strength whereas the thermal
energy is smaller, since the time-varying wind power models boost
the thermal energy during the WR phase directly before the SN.

(v) The time of maximal luminosity (t0, as defined in Thornton
et al. 1998) occurs later, if stellar wind bubbles are taken into ac-
count. In this case the blast expands adiabatically until it impacts on
to the cavity wall. Subsequently the SN blast wave bounces inside
the bubble and as a result the luminosity peaks periodically when-
ever the SN shock-wave hits the cavity wall6 and kinetic energy is
converted to thermal energy (and vice versa). The losses show a
double peak at times when the conversion rates are largest.

(vi) Mixing processes across the CD are important during
pressure-driven phases. In these phases the resolution mimics
the scale of mixing and thus has an effect on the feedback en-
ergy efficiency. Estimates of the physical scale of such mixing

6 More precisely, it does not directly hit the cavity wall, but compresses the
wind gas in front of the cavity wall.
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processes are discussed in Appendix B. We find that for our setup
the estimated length-scale on which turbulent diffusion acts (∼1–
0.01 pc) is largest. At the CD in our problem, turbulent diffusion
seems to be more important than thermal conduction, molecular
diffusion and ambipolar diffusion. In the subsequent momentum-
driven phase, radiative cooling in the swept-up, compressed and
thus heated medium is the dominant energy sink.

(vii) Comparing the constant wind models at different resolutions
(which mimic the length-scale of the mixing processes in the ISM)
shows that the 0.032 pc model has a higher efficiency than expected.
Low-resolution models also can find a higher efficiency, if they
underestimate the density in the shell. In this case the efficiently
cooling temperature–density combination is not found at every time-
step in the 0.032 pc model whereas later on this phase is always
present. In models with higher resolution, the efficiently cooling
layer near the CD has a smaller volume: at the same time of the
simulation it is found at larger radii in simulations with higher
resolution, but it is only a single cell wide. Simulations with a
resolution of 0.001 pc showed cooling losses of the same order of
magnitude in the compressed swept-up medium and near the CD. At
even higher resolutions the cooling layer will at some point become
irrelevant.

(viii) During the wind phase, the density threshold in the cooling
function (e.g. a = 1) reduces the dependence of the feedback energy
efficiency on the resolution (Table 2). However, the differences
between the feedback energy efficiencies for different resolutions
at the end of the simulations are not significantly reduced if the
threshold a = 1 is used instead of a = 0.

(ix) If the coefficient κ of heat conduction is strongly increased
to mimic a highly diffusive process, the models converge, since
the gradients at the CD, which were sensitive to spatial resolution,
get smeared out. However, the total feedback energy efficiency is
drastically lowered by this treatment.

To summarize, winds of massive stars and the cavities created
by them, have an important influence on how much of the stellar
feedback energy can be used for the ISM dynamics. Since the
radiative losses peak near the CD, it is necessary to identify the
most important process for the degradation of this discontinuity.
For example, if turbulent diffusion would act on length-scales of
approximately 1016 cm and the mean density of the GMC is 100
particles per cm3, it would be possible to convert about 2 per cent of
the stellar feedback energy to kinetic energy of cold gas. This is a
lower fraction than the 10 per cent found by Thornton et al. (1998)
and we evaluate the retained energy at a different phase of the
evolution, but since the stellar wind also provides 2.34 × 1051 erg,
the net energy input (6 × 1049 erg) is again of similar order.

The feedback energy efficiencies from the 1D simulations pre-
sented in this work are most likely an upper limit for multidimen-
sional simulations, since (non-radial) instabilities, which arise in
more dimensions increase the surface of the CD and can thus en-
hance mixing between the hot and cold gas phase. In our work these
mixing processes are treated indirectly via the mixing length-scale
(i.e. numerically by the resolution mimicking turbulent diffusion).
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APPENDIX A : MEAN FREE PATH

A crucial length-scale for diffusive processes is the mean free path,
which denotes the average distance a particle travels between two
scatterings. Processes at the scales of the mean free path and below
have to be modelled taking plasma physics into account. Hydrody-
namic simulations are based on the fluid approach, which assumes
that the mean free path is much smaller than a cell size. Hence we
cannot tackle the problem by increasing the resolution, since the un-
derlying assumptions of our method imply a maximal ‘meaningful’
resolution. The mean free path

λ = 1

σn
(A1)

for elastic scattering of neutral hydrogen with an elastic collision
cross-section σ H-H of 5.7 × 10−15 cm2 (Godard, Falgarone & Pineau
Des Forêts 2009) becomes larger than a cell size of e.g. 0.01 pc
(turbulent diffusion length-scale estimate of Gounelle et al. 2009)
if the density falls below 10−26 g cm−3, which corresponds to a
number density of 0.006 cm−3. With the mean molecular velocity

v2
rms = 3kT

mH
= 3RT

μmol
, (A2)

the average time between collisions is

τ =
√

mH

3kT σ 2n2
.

In ionized gases the scattering cross-section is the area in which
the electrostatic energy becomes comparable to the relative kinetic
energy of the two charged particles. The electron mean free path

λe = 0.290 (kTe)2

nee4 ln �
,

(equation 5-26, Spitzer 1956; Shu 1992, equation 1.5) with the
thermal velocity of the electrons

v2
Te

= kTe

me
,

and the Coulomb logarithm

� = 3

2e3

√
k3T 3

e

πne

is larger than 0.01 pc for temperatures above 105.36 K for densities
below 10−26 g cm−3.

APPENDI X B: D I FFUSI VE PROCESSES IN TH E
ISM

The degradation of a CD in kinetic gas theory is caused by particle
motion smearing out a gradient. We can look at different manifes-
tations of this microscopic diffusion process. To do so, we think of
two distinct gas phases in pressure equilibrium that are separated by
a CD. First we will estimate in the rest frame of the CD how many
hot particles will flow into an adjacent cold gas and vice versa. This
ultimately leads to heat conduction down a temperature gradient
(Appendix B1). Another manifestation of such mixing processes is
molecular diffusion (Appendix B2). In this case the CD separates
two different gas species and diffusion will try to level a concen-
tration gradient. Taking a step back from the microscopic level to
the macroscopic level, gas blobs can mix via turbulent diffusion
(Appendix B3). And last but not least one can rely on ambipolar
diffusion caused by magnetic fields.

B1 Evaporation due to thermal conduction

In the PLUTO code (Mignone et al. 2007), thermal evaporation is
facilitated with an additional divergence term for heat conduction
in the energy equation:

∂E

∂t
+ ∇ · [(E + pt ) v] = −∇ · Fc.

Due to the inverse dependence on the particle mass (evident from
the mean molecular velocity, equation A2), conduction is electron
dominated. If the scalelength of the temperature gradient

lT ≡ Te

|∇Te|

MNRAS 456, 710–730 (2016)

 at Sw
inburne U

niversity of T
echnology on M

ay 9, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


726 K. M. Fierlinger et al.

is much larger than the mean free path of the electrons (λe), the heat
flux conducting heat down the electron temperature gradient in a
plasma is given by

Fc = −κc∇Te.

We use a thermal conduction coefficient for a hydrogen plasma of
κc = 5.6 × 10−7T5/2 erg s−1 cm−1 K−1 (Spitzer 1962) within the
PLUTO code (Mignone et al. 2007). The relaxation time

trelax = ncv

κc
(�x)2 = (�x)2

D
= 3

v̄λ
(�x)2

describes how fast heat conduction in the classic heat flux is. For a
gas with a density of 10−26 g cm−3 and a temperature of 106 K on
the scales of �x = 0.01 pc, the relaxation time is ∼1.8 × 107 yr.
For steep temperature gradients with scales shorter than the mean
free path, the code switches to the saturated heat flux, estimated to
be

Fsat = 5φρc3
s,iso [erg s−1 cm−2],

with φ = 0.3 (Balbus & McKee 1982) and c2
s,iso = kT /m because in

this regime the classic heat flux equation overestimates conduction.
In the case of a CD we expect such a very steep temperature gradient.
For a hydrogen gas with ρ = 10−26 g cm−3 and T = 106 K, this flux
is 1.1 × 10−20 erg s−1 cm−2, which can be compared to the loss via
radiative cooling � ∼ 10−22 erg s−1 cm3n2 = 10−26 erg s−1 cm−3

of a slab with a width of 106 cm, which is way below our maximal
resolution. The heat flux is thus not an important agent near the CD
in this problem.

In our simulations, thermal conduction saturated near the CD.
The kinetic energy efficiency is only slightly lowered, if thermal
conduction is taken into account (Table 2, Fig. 8), which is in
agreement with the aforementioned order of magnitude estimates.

A more important aspect is the change in particle density,
which affects the radiative cooling losses. Tenorio-Tagle (1996)
find 10 per cent of shell mass mixed into the cavity due to ther-
mal evaporation. The efficiency of mixing of particles of different
temperature is discussed in the section on molecular diffusion.

B2 Molecular diffusion

Molecular diffusion levels concentration gradients. If a diaphragm
between two gaseous species in pressure equilibrium is removed,
random movement of all gas particles starts to mix the two species.
This process is described with the diffusion equation

∂n

∂t
= D

∂2n

∂x2
,

with the solution

n(x, t) = N√
4πDt

exp
(−x2/4Dt

)
.

The diffusion coefficient D ∼ v̄λ/3 is the same as for heat conduc-
tion. The diffusion length

�x =
√

2Dt ∼
√

2/3v̄λt

is a measure over which physical scales mixing has occurred.7

7 Diffusion over a scale �x can be found from (�x)2 = (x − x̄)2 =
(x − 0)2 = 1

N

∫ ∞
−∞ x2n(x, t)dx = 2Dt .

This relation can also be used to estimate the time-scale of this
process:

td = (�x)2

λvrms
, (B1)

with the mean free path λ (equation A1) and the rms-velocity vrms

(equation A2).
Equation (B1) shows that molecular diffusion mixes chemical

species efficiently in the hot dilute gas inside the bubble: in a gas
with n = 10−2 cm−3, T = 107 K and μ ∼ 1 g mol−1 we find vrms

∼ 500 km s−1 and a time of ∼33 yr for mixing on the scales of
�x = 0.01 pc.

Diffusion inside the swept-up medium is inefficient (n = 1 cm−3

and T = 100 K leads to a time of ∼1.5 Myr for mixing on the scales
of �x = 0.01 pc).

All particles within a mean free path from the CD can penetrate
into the other phase and one-sixth of them will have a velocity
vector appropriate to do so.8 For two phases with n = 0.01 cm−3,
T = 106 K and n = 1 cm−3, T = 100 K, respectively, the same
number of hot and cold particles cross the CD. There is no change
in density and thus no change in the mean free path, but there is a
change in temperature. The hot particles in the cold medium undergo
their first collision with cold particles after t = λcold/vhot = 0.35 yr.
This means that after 0.35 yr, a region of a length of 6 × 10−5 pc
(λcold) has a mean temperature of Thot/6 + 5Tcold/6 = 1.7 × 105 K.
To estimate how much thermal energy has been carried into the
cold medium, we find the number of diffused particles from
�n = Aλcoldnhot/6 = 2.9 × 1011A cm−2 (with nhot = 0.01 cm−3,
λcold = 1.7 × 1014 cm). The energy transfer caused by particle
motion is Ė = ṅkT = nhot/6vhotkThot = 3.6 × 10−6 erg s−1 cm−2.
With a cooling rate of �cool = 10−22 erg s−1 cm3n2, the energy
flowing through an area A of the CD would be lost in a cell with a
number density of 1 cm−3 and a volume of A × 0.01 pc.

Tenorio-Tagle (1996) reports that 10 per cent of the ambient
medium ended up in the bubble via thermal conduction and dense
clumplets originating from the ambient medium penetrating the
bubble wall. From kinetic gas theory, we would expect that in each
collision time a sixth of the density in the first mean free path of the
shell is lost into the bubble. In the example given above, the particle
number was conserved, but if the density of the shell is enhanced,
there will be a net flux of particles into the cavity.

B3 Turbulent diffusion

Velocity fields that may be created by hydrodynamic instabilities,
overstability of radiative shocks (Chevalier & Imamura 1982), non-
linear thin shell instability (Vishniac 1994), turbulence or convec-
tion can produce eddies and large-scale perturbations that are mixed
into a different gas phase. Such mixing processes do not necessarily
lead to a homogeneous mixture – some authors (for a summary see
Pan et al. 2012) rather expect an oil-in-water-like process leading to
cold clumps immersed in hot zones, whereas other authors assume
that the phases fully mix (e.g. Gounelle et al. 2009).

In this process eddies of size lturb mix with the velocity vturb. The
diffusion coefficient of turbulent mixing is

Dturb = vturblturb.

8 The number of particles crossing the CD in the time interval t are thus a
sixth of the particles within the volume Avt where A is the unit area.
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Diffusion rises linearly below the size of turbulent eddies and satu-
rates due to turnover as soon as the eddy size is reached.

The assumed efficiencies of mixing in an SN shell range from
a few per cent (Boss & Keiser 2012, mixing via clumps and RT
fingers), over a range from 2 to 70 per cent (Gounelle & Meynet
2012), to the full range of few per cent to full mixing in the study
of Pan et al. (2012, clumplets and turbulent diffusion).

The estimates for the eddy size range from lturb ∼ 0.1–1 pc
(Stasińska et al. 2007, dispersion of metal-rich droplets in H II

regions via molecular diffusion and turbulent mixing) to lturb ∼
0.01 pc (Gounelle et al. 2009, highly turbulent mixing process with
100 per cent mixing efficiency and the characteristic length-scale
of the thermal instability). Turbulent diffusion is thus likely to act
on length-scales comparable to the resolution of our simulations.

B4 Ambipolar diffusion

Ambipolar diffusion is a process that can remove magnetic fields
from molecular clouds: the magnetic fields are tied to the ionized
gas component, and this component drifts relative to the cold neu-
tral component of the gas, which is accelerated by gravity. For
example, Jijina, Myers & Adams (1999) noted that ambipolar dif-
fusion takes place more rapidly than the simple laminar description
predicts. For a dense core with the size r the time-scale for ambipo-
lar diffusion is τAD = r

vD
(where vD is the ion-neutral drift speed;

Mouschovias 1987, equation 81). This can be approximated by

τAD ∼ 3 × 106 yr
( nH2

104 cm−3

)1.5 ( 30 µG
B

)2
(

r
0.1 pc

)2
.

For a density of 1 cm−3 and a magnetic field strength of 10 μG
(Crutcher 2012), this leads to a time of about three months for
0.01 pc. However, this process rather acts to separate the gas phases
than to mix them.

B5 Artificial mixing across the CD

Numerical simulations find large radiative cooling losses near the
CD separating the dilute extremely hot shocked wind gas and the
dense swept-up medium. In the literature this is sometimes called
‘catastrophic cooling’ (Tenorio-Tagle et al. 1990; Smith & Rosen
2003). These losses arise because the code mixes two media that
should be separated by a CD and the cell with the mixture of
the two phases efficiently cools, acting like a valve, considerably
reducing the feedback efficiency. If the mixing scale is not resolved
numerically, this process could lead to artificially high radiative
losses.

In this work we also test the importance of this effect by regulating
the radiative energy loss of the critical cell near the CD, which acts
as the dominant energy sink. Numerically there are basically two
strategies to prevent extreme cooling losses in cells in the vicinity
of a CD where the two media mix.

(1) Strictly enforcing the separation of these two phases: the
simplest way to avoid cooling losses in the hot dilute cells in which
shell material and wind material can be found, is to increase the
density threshold of the cooling function. Our cooling function is
tabulated for number densities nH > 0.01 cm−3. To avoid cooling
losses at the CD, in the models with ‘density thresholds’ radiative
cooling is switched off if the cell’s density is below a times the
ambient density ρ0. For example, in runs with a = 1, radiative
cooling is switched off at all densities below the ambient density.
By doing this, we mimic a sub-grid model with two nicely sepa-
rated ISM components in the cell: the gas is either too cold or not

dense enough to cool and no strongly cooling intermediate phase is
produced. Or in other words, at densities below aρ0 the simulation
becomes adiabatic. Krumholz, Stone & Gardiner (2007) discuss a
similar solution to avoid artificially high radiative cooling rates near
ionization fronts. Their zone selection is based on the ionization de-
gree instead of the density (as used in our approach).

(2) Postulating a strong mixing process that smears out the tem-
perature and density gradients near the CD: this leads to low temper-
atures in regions, which are dense enough to cool. Efficiently mixing
gas across the CD can be achieved e.g. via turbulent diffusion, as
discussed before. The radiative cooling losses are a function of
temperature and density. Lowering the density and the temperature
by enhancing the mixing at the discontinuity can limit the energy
losses via radiative cooling by producing cells that are already too
cold to cool efficiently.

APPENDI X C : PHASES O F SN BUBBLE
E VO L U T I O N

For an SN explosion in a homogeneous n = 100 cm−3 ambient
medium, the initial free expansion phase quickly transits into the
Sedov–Taylor phase (r ∝ t2/5, v ∝ t−3/5). This phase ends when
the cooling time becomes comparable to the dynamical time. In the
subsequent radiative phase a dense shell forms and the expansion
is driven by pdV work in this so-called pressure-driven snowplough
phase (r ∝ t2/7, v ∝ t−5/7). In this phase the pressure in the dense
shell is the same as in the shocked zone. When the pressure in the
cavity has decreased enough, the remnant enters the momentum-
conserving phase (r ∝ t1/4, v ∝ t−3/4) in which the shell’s momentum
leads to further expansion of the bubble. We will now show, which
power laws we found in the simulations.

C1 Simulated pressure-driven expansion

In this phase the pressure inside the bubble pushes the shell into
the ambient medium. Near the CD, a density peak forms. Behind
the shock, at the outer side of the bubble’s shell, a layer of heated

Table C1. Times when the pressure inside the bubble has decreased to the
ambient pressure in a model without prior winds. The SN is placed in a
homogeneous ambient medium with a density of 2.2 × 10−22 g cm−3. The
ambient medium is in cooling–heating equilibrium.

p (erg cm−3) �x (pc) t (kyr) Ekin (1049 erg)

3.99 × 10−11 0.032 34.5 6.32
1.83 × 10−12 0.032 118.5 2.58
1.83 × 10−12 0.016 147.0 2.12
1.83 × 10−12 0.008 174.0 1.85

Table C2. Times when the peak pressure in the shell becomes larger than the
pressure inside the bubble in a model without prior winds. The SN is placed
in a homogeneous ambient medium with a density of 2.2 × 10−22 g cm−3.
The ambient medium is in cooling–heating equilibrium.

p (erg cm−3) �x (pc) t (kyr) t (kyr)
peak average

3.99 × 10−11 0.032 6.5 7.5
1.83 × 10−12 0.032 9.5 9.5
1.83 × 10−12 0.016 8 8
1.83 × 10−12 0.008 6.5 6.5
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swept-up medium at four-times the ambient density develops.9 De-
spite radiative cooling losses the pressure in the shell gets much
larger than the bubble pressure. Material starts to flow into the cav-
ity and the bubble shell’s density profile becomes symmetric. The
largest cooling losses arise near the highest density gradient at the
interface between the dilute bubble material and the swept-up am-
bient medium. For better-resolved simulations, the density in the
cooling region becomes larger, but at the same time the cooling
region becomes smaller. The simulations converge because for all
of them the same amount of gas is compressed and cooled to the
minimal temperature in the cooling table.

Since the swept-up shell is several cells wide, the retained kinetic
energies converge as soon as the cell with the highest density has
cooled to its equilibrium temperature and the cooling losses are
dominated by the newly swept-up compressed medium. The maxi-
mum luminosity is reached earlier for simulations with larger cells,
since lower resolution will mix more of the hot gas in the bubble
with the swept-up medium and thus enhance the cooling losses.

In models that take the wind of the progenitor of the SN into
account, the maximal luminosity has two peaks and occurs later,
since in a wind bubble the blast wave suffers no radiative losses
until the wind shell is hit. In this case, the bouncing SN blast wave
inside the wind cavity causes double peaks in the loss rate: the first
maximum in the loss is reached when the cavity wall is compressed
and kinetic energy is converted to thermal energy and the second
peak is found when the wall expands and thermal energy is converted
back to kinetic energy. Due to the reflection of this wave inside the
cavity, the interaction of the wave and the cavity wall causes periodic
conversions between thermal and kinetic energy with decreasing
peak loss values until the SN wave is damped away.

During phases in which the pressure of the adiabatic expansion
of the hot dilute (and therefore not cooling) interior of the bubble
pushes the shell (cf. McKee & Ostriker 1977; Ostriker & McKee
1988), the change of momentum

4πρ

3

d
(
(r (t))3 dr(t)

dt

)
dt

= 4π (r (t))2︸ ︷︷ ︸
bubble surface

pbubble (C1)

can be combined with the law of adiabatic expansion

pbubble (t)

pbubble (0)
=

(
r (t)

r (0)

)−3γ

(C2)

and an adiabatic exponent of γ = 5
3 . This way the exponents of r

become

3N + (N − 1) − 1 = (2 − 5)N

N = 2/7

and thus dimensional analysis leads to

r (t) = ct2/7

r (t) = 7

√
147r5

0 p0

2ρ
t2/7 (C3)

(cf. equation 12 of McKee & Ostriker 1977 for the pressure-driven

phase: r (t) = 10−0.32 7
√

r2
c ESN
n0

t2/7), which in turn leads to a velocity

9 The maximal compression of an adiabatic mono-atomic gas leads to a
factor of 4 in density.

of

dr (t)

dt
= 2

7
7

√
147r5

0 p0

2ρ
t−5/7 (C4)

and a kinetic energy of

Ekin = mv2

2
= ct−4/7,

with c = 8πρ

147
7

√
147r5

0 p0

2ρ
. (C5)

The best fits to the 40 K models for times between the time of
maximal luminosity t0 and the time when the pressure inside the
bubble has decreased to the ambient pressure (Table C1) is, however,
E ∝ t−0.7, r ∝ t0.272, v ∝ t−0.75. These fits rather resemble the
behaviour of the momentum-conserving phase. Our models show
that the pressure inside the bubble is much lower than the pressure in
the shell. Thus, the overpressure of the shell also drives the bubble-
expansion into the ambient medium. Table C2 lists the times, when
the shell pressure becomes larger than the bubble pressure. These
times mark the end of the pressure-driven phase and very close to
these times (near 8 kyr) a ‘knee’ can be seen in Fig. 3. Moreover,
the best fits for the radius and the velocity in this short period of
time are in agreement with fits of a pressure-driven phase. The
total kinetic energy decreases more slowly than a pressure-driven
fit would predict, since not all the kinetic energy is stored in the
shell.

Tenorio-Tagle et al. (1990) and Tenorio-Tagle (1996) report hot
swept-up matter separating the CD several parsecs from the outer
shock for their SN explosion in a homogeneous medium. This is
also seen in our simulation with n0 = 1 cm−3, T = 100 K. The CD
and the outward shock are at the same radius as reported by Tenorio-
Tagle et al. (1990). In our simulations, the hot material between the
CD and the thin dense shell (with a sub-parsec shell width, created
by a sound wave from the reverse shock) is hot shocked swept-up
ISM.

C2 Simulated momentum conservation

Comparing the pressure inside the bubble to the pressure of the
ambient medium shows that at 13 t0 the T = 1000 K model is already
in the momentum-conserving phase whereas the 40 K model is still
pressure driven. The times when the pressure inside the bubble has
decreased to the ambient pressure are listed in Table C1.

Assuming that all ambient medium is swept-up in a thin dense
shell, this shell is at radius r(t) moving with a velocity of dr(t)

dt
at

time t. Momentum conservation

4πρ

3

d
(
r (r (t))3 dr(t)

dt

)
dt

= 0 (C6)

leads to a radius of

r (t) = b
4
√

a + 4t (C7)

and a velocity of

dr (t)

dt
= b (a + 4t)−0.75 , (C8)

which leads to a kinetic energy of

Ekin = mv2

2
= c (a + 4t)−0.75

with c = 2πρb5

3
, (C9)
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Figure C1. Fit of a momentum-conserving shell to the data. The middle
panel shows the deviations from the fit. It can be seen that the kinetic
energy decays more slowly than a momentum-conserving model predicts.
This indicates that the widening of the overpressured shell contributes to the
growth of the cavity. In the lowest panel, the kinetic energy of bubble-gas
is compared to the kinetic energy of the dense shell. The oscillations are
caused by a wave travelling inside the cavity (see text).

where a, b and c are constants. This function was used to fit the
kinetic energy evolution of models after the times listed in Table C1.

The fits of the bubble radius, the shell velocity and the kinetic
energy showed that the kinetic energy decreases more slowly than
equation (C9) predicts (respectively, the shell moves faster). The
ratio between the shell’s kinetic energy to the bubble’s kinetic energy
and the deviations of the fit from the kinetic energy (Fig. C1) show
that the overpressure in the cavity wall leads to an expansion of the
shell into the cavity and a high-pressure wave starts to run back and
forth in the cavity and the impacts on to the shell increase the shell
velocity.

The best fit to the bubble radius after the end of the pressure-
driven phase is r ∝ t0.28. Thus, this fit for the radius of the sim-
ulated bubbles is rather a pressure-driven fit (equation C3) than a
momentum-conserving fit (equation C7). The velocity v ∝ t−0.77

and kinetic energy E ∝ t−0.78, however, cannot be fitted with the
pressure-driven model.

The time when the shell velocity reaches the sound speed can be
estimated from the fits by setting equation (C8) equal to the sound
speed. All fits predicted a shorter time and a higher kinetic energy
than the simulation data.

A P P E N D I X D : C O N V E R G E N C E

D1 Temporal resolution

In our simulations the time-step is limited by the CFL condition,
which ensures that gas cannot travel more than a cell length per
time-step. Thus, we can reduce the time-step via reducing the cell
size

(
�x
2

)
or via reducing the factor in the CFL condition

(
CFL

2

)
;

i.e. the time-step for a simulation with CFL=0.3 is similar to the
time-step in a simulation with CFL=0.6 and twice the number
of cells per parsec. The time-steps of these two simulations dif-
fer a little, since variations in the velocities caused by the spatial

resolution are a second-order effect on the time-step size. The max-
imum velocities at a given time in the different simulations vary
by less than 10 per cent. The location of the cell, which limits the
time-step depends on the evolution of the model: after 1 Myr the
gas velocity in the outermost cell of the free streaming wind region
limits the time-step whereas after 4 Myr the sound speed in the
shocked wind region near the bubble wall limits the time-step size.

The two-shock Riemann solver’s efficiency is independent of
the time-step size (varied via the CFL and by changing the time-
marching algorithm from second-order Runge–Kutta to third-order
Runge–Kutta) whereas an approximate Riemann solver (‘Roe’ in
PLUTO; see Appendix D2) gets more efficient for larger time-steps,
since the energy loss at the reverse shock occurs less often.

D2 Riemann solver and spatial interpolation scheme

We compared simulations in which the Riemann problem at each
cell interface was solved in different ways: the HLLC method (Toro,
Spruce & Speares 1994) only takes the fastest leftward and right-
ward moving characteristic into account and solves the problem
with two intermediate states separated by a CD. It is thus very ef-
ficient, but also leads to the most diffusive solution of the three
methods we compare. The Roe solver (Roe 1981, 1986) provides
an exact solution of a linearized Jacobian; i.e. it keeps all seven
characteristics, but treats all of them as simple waves. It is a shock-
capturing scheme, and can resolve a CD in approximately three
grid cells. Its known downsides are that it sometimes creates un-
physical fluxes, that it can lead to negative thermal energies since
it conserves total energy, and that it can create expansion shocks
instead of expansion waves. In our simulation, the Roe solver led to
energy losses at the slowly moving reverse shock. This can be seen
as damped oscillations in the shocked wind. The two-shock solver
solves the problem iteratively. It is a piecewise parabolic method:
the states left and right of the interface are assumed to be parabolic
(and not constant). As a consequence it allows for steepening near
discontinuities. For more insight on the hydro solver, we refer the
reader to Mignone et al. (2007, 2012).

In the simulations10 with initial densities of
ρ = 2.2 × 10−22 g cm−3, pressures of p = 1.48 × 10−12 erg cm−3,
resolutions of �x = 0.032 pc and extreme mass-loss (500 M�,
which is much too high, but was used for tests of the kinetic energy
fraction) in the SN, the two-shock solver (Colella & Woodward
1984; 1.8 × 1049 erg when the shell speed reaches the sound
speed) is more efficient than the Roe solver (Roe 1981, 1986;
1.5 × 1049 erg) and less efficient than the HLLC solver (Toro et al.
1994; 2.2 × 1049 erg). This is the expected behaviour, since the
HLLC solver is the most diffusive of the three solvers and hence
the density and temperature gradients at the CD are shallower and
thus the temperature in the first cell, which is dense enough to cool,
is smaller than in simulations with the two-shock solver. On the
other hand, the Roe solver has the aforementioned problems with
energy losses at the reverse shock.

Actually all solvers produce oscillations inside the shocked wind
region. A test with a constant wind showed that these oscillations
are not caused by changes of the wind power (since they are also
observed in a simulation with a constant wind).

To avoid energy losses at the reverse shock, the spatial interpo-
lation scheme should allow for large gradients in this region. The
PLUTO (Mignone et al. 2007) code’s ‘WENO3’ scheme (Yamaleev &

10 This is a different set from the simulations in Table 2.
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Figure E1. Comparison to fig. 11c in Tenorio-Tagle et al. (1990).

Carpenter 2009) leads to a weighted essentially non-oscillatory re-
construction of the primitive variables which reaches third-order
accuracy. It is suited for smooth data and led to a lower effi-
ciency and stronger oscillations in the shocked wind region than the
‘LINEAR’ scheme that carries out a piecewise total variation di-
minishing linear interpolation leading to second-order accuracy in
space. Also ‘WENO3’ produces a density drop11 on the inside of
the shell, which leads to code crashes.

11 Rather a dent or ‘negative spike’ than a drop – just one cell has a lower
value.

A P P E N D I X E : C O M PA R I S O N TO T E N O R I O
TAG LE ET A L. (1 9 9 0 )

Fig. E1 compares the energy content of our simulations with con-
stant winds producing a 4.5 pc or 15 pc cavity to fig. 11c in Tenorio-
Tagle et al. (1990).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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